1 Ответ
Формула для объема конуса V = 1/3*π*r^2*h, где r — радиус основания, а h — высота конуса.
Диаметр основания равен 12 см, поэтому радиус r будет равен 12/2 = 6 см.
Образующая конуса (10 см) является гипотенузой в прямоугольном треугольнике, где одна из сторон — это радиус (6 см), а другая — высота конуса.
Используя теорему Пифагора для нахождения высоты, получим:
h = sqrt(10^2 — 6^2) = sqrt(100 — 36) = sqrt(64) = 8 см.
Затем подставим эти значения в формулу объема конуса:
V = 1/3*π*(6 cm)^2*(8 cm) = 96π см^3.
Ответ: объем конуса равен 96π см^3.
Arnfinn ответил на вопрос 06.06.2024