1 Ответ
Задание 1. Чему может быть равна сумма цифр четырёхзначного числа, если произведение его цифр равно 1050? Укажите все подходящие варианты. Ответ: 23
Задание 2. В ряд лежат 25 шариков двух цветов: красные и синие. Известно, что среди любых пяти подряд идущих шариков не менее трёх красных, а среди любых шести не менее двух синих. Сколько красных шариков могло быть в ряду? Укажите все подходящие варианты. Ответ: 15, 16, 17
Задание 3. В трапеции ABCD точки P и Q середины оснований BC и AD соответственно. Найдите угол между прямыми PQ и AD, если ∠BAD=33∘, ∠CDA=57∘. Ответ: 114°
Задание 4. Последовательность чисел (an)определяется следующим образом: a1=2, a2=1213, an=an−2⋅an−12an−2−an−1 для всех n=3, 4, … Запишите значение a500 в виде несократимой дроби. Ответ 12/3499
Задание 5. График квадратичной функции f(x)=ax2+bx+c при a>0 пересекает оси координат в трёх точках, образующих треугольник со сторонами 9, 12 и 15.
Найдите c. = –36/5
Найдите f(1)+f(−1). = –1271/90
Задание 6. Назовём натуральное число разностным, если оно может быть представлено в виде abcdef −ab −cd −ef для некоторого шестизначного числа abcdef. Сколько существует разностных чисел, не превосходящих 600000? Десятичная запись натурального числа не может начинаться с нуля. Ответ: 5001
Задание 7. Иван готовится к переезду, поэтому он решил распродать ненужные вещи, пригласив ns10 n s 10 соседей. Чтобы получить бесплатно предмет стоимостью S рублей, нужно выполнить условие: первый покупатель получает скидку 1%, второй 2%, … , n-й, после чего вычисляется общая сумма денег, которую должны были бы заплатить соседи (с учётом скидки). Если эта сумма составляет целое число рублей, то предмет достаётся им бесплатно! Чему могло равняться S, если существует единственное n, при котором предмет стоимостью S рублей окажется бесплатным? Выберите все подходящие варианты:
800
820
825
830 +
850
890 +
Задание 8. Окружности w1 и w2 имеют радиус 9 каждая, а расстояние между их центрами равно 4. Окружность w3 это окружность наибольшего радиуса, касающаяся внутренним образом w1 и w2 и лежащая внутри этих окружностей. Окружность w4 касается внутренним образом w1и №2 и внешним w3. Найдите радиус окружности w4. Ответ: 7/8
