В крайних клетках полоски шириной в одну клетку и длиной в N клеток сидят лягушка и кузнечик: лягушка в клетке под номером 1, кузнечик в клетке под номером N. Каждую секунду лягушка прыгает в сторону кузнечика, и одновременно кузнечик прыгает в сторону лягушки. Лягушка может прыгать только на две или на три клетки, кузнечик — только на одну или на две клетки. За какое наименьшее время они смогут оказаться в одной клетке?
Формат входных данных
Единственная строка входных данных содержит целое число N — длину клетчатой полосы (2≤N≤2⋅109).
Формат выходных данных
Если лягушка и кузнечик могут оказаться в одной клетке, требуется вывести одно целое число — минимальное количество секунд, через которое они могут встретиться. Если они не смогут оказаться в одной клетке, требуется вывести число «−1» (без кавычек).
Система оценки
Решения, правильно работающие при N≤30, будут оцениваться в 30 баллов.
Решения, правильно работающие при N≤105, будут оцениваться в 50 баллов.
Пояснение
В первом примере лягушка может прыгнуть из клетки 1 в клетки 3 и 4, а кузнечик может прыгнуть из клетки 5 в клетки 3 и 4. Поэтому через 1 секунду они могут оказаться в одной клетке.
Во втором примере лягушка и кузнечик могут встретиться через 2 секунды. Например, лягушка прыгает в клетку 3, затем в клетку 6, а кузнечик прыгает в клетку 8, затем в клетку 6.
Ввод
Вывод
5
1
9
2
1 Ответ
#include<iostream>
using namespace std
int main()
{
int n,b=1;
cin >> n;
for (int i=1;
i<n;i++){
if (b+2==n-1 || b+3==n-1 || b+2=-n-2 || b+3==n-2) {
cout << i;
return false;
else{ b+=2;n-=1;
}
}
cout << -1;
return 0;
}